Reduno.ru

КАРС Авто
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где используется индуктивный датчик?

Где используется индуктивный датчик?

Главная Статьи Датчики автомобиля Датчики положения (индуктивный датчик, датчик Холла)

Датчики положения (индуктивный датчик, датчик Холла)

Для измерения скорости вращения и определения положения различных узлов двигателя используются датчики положения. К ним относятся: датчик положения коленчатого вала (ДПКВ), датчик положения распределительного вала (ДПРВ) или датчик фазы (ДФ), датчик скорости (ДС), датчики ABS.
Сигнал ДПКВ используется для определения частоты вращения КВ, а также его мгновенного положения. Т.к. частоты вращения распределительного и коленчатого валов соотносятся как 1:2, то только по сигналу ДПКВ невозможно однозначно определить находится ли поршень двигателя, движущийся к ВМТ, на такте сжатия или выпуска. Фазный датчик на распределительном валу передает эту информацию в блок управления.
В качестве примера приведен сигнал с авто ВАЗ.

alt

Сигналы ДПКВ (синий) и ДПРВ (зеленый)

К наиболее распространенным типам этих датчиков относятся: индуктивный (электромагнитный) датчик и датчик Холла.

Индуктивный датчик

Этот тип датчика наиболее распространен в качестве ДПКВ. Датчик монтируется поблизости от подвижного элемента, называемого маркерным диском. Этот элемент представляет собой стальной диск с зубьями, который жестко зафиксирован на коленчатом валу (может находиться как со стороны ременной передачи, так и непосредственно на маховике КВ).

alt

Расположение ДПКВ
1. ДПКВ
2. Маркерный диск
3. Разъем датчика

Датчик состоит из обмотки с сердечником из постоянного магнита. Когда зуб проходит перед датчиком, это приводит к усилению магнитного потока, проходящего через обмотку. Напротив, увеличение зазора ослабляет этот поток. Происходит изменение магнитного поля, которое вызывает появление индукционного тока в обмотке. Амплитуда напряжения переменного тока сильно возрастает по мере повышения частоты вращения маркерного диска (от нескольких мВ до значений более 100 В).

alt

Конструкция индуктивного датчика
1. Обмотка
2. Метка на маркерном диске в виде пропущенных зубьев
3. Постоянный магнит

Маркерный диск может иметь как пропуски зубьев, так и более широкие зубья.

alt

Кол-во зубьев маркерного диска зависит от его назначения и модели авто. В качестве маркерного диска для КВ наиболее распространенным является диск с 60-ю зубьями, при этом два зуба пропущены. Зазор с пропущенными зубьями предназначен для отметки определенного положения коленчатого вала и служит как установочная метка для синхронизации блока управления.
На маркерных дисках системы ABS пропуск зубьев отсутствует, т.к. в данной системе положение колеса не принципиально, имеет значение только скорость вращения.

alt

Пример сигнала индуктивного датчика ABS

В варианте исполнения для ДПРВ, маркерный диск может иметь всего один зуб, т.к. в данном случае нет необходимости измерять скорость вращения, нужно определить только положение РВ для определения фазы работы двигателя.

alt

Для дальнейшего анализа электронный блок производит преобразование аналогового сигнала в цифровой. Амплитуда напряжения сигнала пропорциональна скорости прохождения подвижной детали перед датчиком. Напряжение также в значительной степени зависит от расстояния между вершинами зубьев и поверхностью датчика, как правило, зазор составляет 1±0,5 мм. Подсчитывая число импульсов в течение заданного промежутка времени, электронный блок может определить скорость вращения КВ.
Индуктивный датчик подключается к контроллеру экранированной парой проводов с заземлением экранирующей оплетки на кузов автомобиля.

alt

Пример схемы подключения ДПКВ

Для записи осциллограммы индуктивного датчика, необходимо подключиться измерительным щупом непосредственно к сигнальному выходу датчика либо к разъему со стороны ЭБУ.

alt

Подключение мотор-тестера к ДПКВ (цветовая маркировка проводов указана в качестве примера)

Датчик Холла

В таких датчиках использован эффект Холла. Интегральная схема датчика Холла располагается между маркерным диском и постоянным магнитом.
Когда зуб маркерного диска проходит у элемента датчика, то он изменяет величину магнитного поля, пронизывающего элемент Холла. За счет этого возникает сигнал напряжения, который находится в милливольтновом диапазоне и не зависит от относительной скорости между датчиком и маркерным диском. Оценивающая электронная схема, встроенная в интегральную схему, вырабатывает сигнал в форме прямоугольных импульсов.

alt

Датчик Холла
1. Постоянный магнит
2. Интегральная схема Холла.
3. Маркерный диск
4. Разъем датчика

alt

Как правило, датчик Холла имеет три вывода: питание +5В (+12В), «земля», сигнальный выход.

alt

Пример схемы подключения ДПРВ

Для записи осциллограммы датчика Холла, необходимо подключиться измерительным щупом непосредственно к сигнальному выходу датчика либо к разъему ЭБУ.

alt

Подключение мотор-тестера к ДПРВ (цветовая маркировка проводов указана в качестве примера)

Для записи сигнала ДПКВ рекомендуется использовать 2ой аналоговый канал мотор-тестера, для сигнала ДПРВ — 3ий канал. При наличии нескольких ДПРВ, можно использовать любой свободный аналоговый канал.

alt

Настройка аналогового канала для индуктивного датчика

alt

Настройка аналогового канала для датчика Холла

Одновременный анализ сигналов ДПКВ и ДПРВ позволяет проверить работу этих датчиков, а также правильность установки КВ и РВ (соответствие меток ГРМ).

ИНДУКТИВНЫЕ ДАТЧИКИ И ИХ ВИДЫ

Индуктивные датчики

Индуктивный датчик — устройство для измерения каких либо физических величин, преобразующий информацию в электрический сигнал. Основан на принципе изменения магнитного поля, генерируемого внутри, под воздействием металлического или ферромагнитного материала.

Используя различные электромеханические схемы, можно получить элементы контроля любых технических параметров — скорости, положения, перемещения, давления, частоты, уровня жидкости, много другого.

Индуктивные датчики — это бесконтактные устройства в герметическом корпусе, что позволяет их использовать во взрывопожароопасных средах, помещениях повышенной влажности, уличных условиях эксплуатации. Отсутствие движущихся частей и контактов, многократно увеличивает ресурс работы, надежность, по отношению к механическим аналогам.

  • промышленность и производство — автоматизация, контроль;
  • техника — датчики давления, скорости, частоты, положения;
  • безопасность — системы защитного отключения, блокировки, сигнализации;
  • быт — приспособления контроля водоснабжения, освещения, открытия-закрытия дверей, элементы «умного дома».

УСТРОЙСТВО, ХАРАКТЕРИСТИКИ, ПРИНЦИП ДЕЙСТВИЯ

Индуктивные (или бесконтактные) датчики, несмотря на различную специфику, имеют схожее внутреннее устройство. Металлический либо пластиковый корпус залитый компаундом (электроизоляционный состав на основе эпоксидных смол, полимеров, битума), внутри располагаются генератор ЭМП, триггер (в аналоговых устройствах детектор), индикатор состояния (светодиод), усилитель сигнала.

Генератор состоит из полупроводникового элемента, производящего ток определенной частоты, который через катушку индуктивности, с ферритовым сердечником, создает переменное магнитное поле.

При вхождении в зону чувствительности датчика, токопроводящего материала (металлического сигнального флажка или другого исполнительного элемента), индуктивность системы меняется, в свою очередь, воздействую на амплитуду тока генератора. По достижении значений срабатывания, на триггере, формируется управляющий сигнал.

Усилитель увеличивает мощность импульса до необходимых значений, после чего, в зависимости от назначения прибора, он подается на коммутационный блок (размыкает — замыкает цепь) или далее, на средство измерения или АСУ.

  • одинарные — с одним магнитопроводом, ветвью измерения. Схема реализована в бесконтактных выключателях;
  • дифференциальные — с двумя магнитопроводами ш-образной формы, взаимно компенсирующим воздействие на сердечник, что повышает чувствительность и точность измерений. По сути, представляют собой систему двух одинарных датчиков, с общим якорем;
  • трансформаторные — коэффициент трансформации изменяется при перемещении якоря, генерируя определенное напряжение на выходе вторичной обмотки. Принцип используется в элементах фиксации угловых, небольших линейных перемещений.
  • максимальный ток;
  • частота переключений — для большинства моделей до 1-5 кГц;
  • предел срабатывания — минимальное значение физической величины вызывающее отклик;
  • скорость срабатывания (в микросекундах);
  • климатическое исполнение — диапазон температур при которых устройство гарантированно работает (от -40 0 С до +60 0 С).
  • надежность конструкции — отсутствие движущихся элементов, контактов, полная герметичность, прочность;
  • ресурс работы до 10 лет, не требуют какого либо обслуживания;
  • высокая чувствительность, скорость и частота срабатывания;
  • мощность выходного сигнала до 100 Вт и выше;
  • доступность, широкий выбор типов и производителей.
  • требовательны к «чистоте» и постоянству питающего тока;
  • чувствительны к воздействию внешних магнитных полей, возможно искажение выходного сигнала.

ПРИМЕНЕНИЕ И СПЕЦИФИКА

В промышленности и технике, индуктивные элементы постепенно вытесняют механические концевые выключатели. Индуктивный бесконтактный датчик замыкает-размыкает управляемую цепь при попадании металла в зону чувствительности.

Различные кинематические схемы позволяют использовать устройство для контроля состояния дверей, створок, люков, положения деталей, ограничения хода подвижных элементов, системах защитного отключения, блокировки включения.

Индуктивный датчик положения позволяет фиксировать перемещение объекта расстоянием от нескольких микрометров до сантиметров. По устройству, в большинстве случаев, это дифференциальный трансформатор. Ток со вторичной обмотки подается на систему автоматизированного управления, которая контролирует работу всего агрегата, линии, машины. По такому же принципу устроены элементы измерения углов поворота.

Индуктивный датчик давления имеет электромеханическую конструкцию. Основой является элемент фиксирующий перемещение, якорь которого соединен с поршнем или мембраной. Сила, возникающая в результате воздействия давления жидкости или газа, уравновешивается пружиной, вынуждает занимать якорь определенное положение. Информация переводится в форму электронного сигнала, передается на КИП или АСУ.

Индуктивный датчик скорости отличается от бесконтактных выключателей наличием блока измерения частоты импульсов. Зубчатое колесо, вращаясь, периодически воздействует на зону чувствительности, генерируя импульсы определенной частоты, зависящие от скорости движения. Частота сравнивается блоком измерений, передается далее на КИП, АСУ, либо коммутирующий элемент.

По аналогичному принципу работают приборы измерения частоты, направления вращения, положения коленчатого вала.

  • двухпроводные — включаемые непосредственно в управляемую сеть. Бесконтактные выключатели, элементы сигнализации, защиты.
  • трехпроводные — питание выделено отдельно (как правило это синий и красный выводы), нагрузка — сигнал, третий (черный) проводник;
  • четырехпроводные — имеют два выхода для передачи информации;
  • пятипроводные — пятый, вход, используется для управления режимами работы.

ПРОИЗВОДИТЕЛИ И БРЕНДЫ

Российский рынок средств КИП представлен сотнями отечественных и зарубежных марок. Европейские производители, традиционно позиционируются как поставщики наиболее качественной, но и более дорогой продукции.

Наиболее известные IFM Electronic, Balluff, Turck.

IFM Electronic — немецкая корпорация выпускающая средства измерения, автоматики с 1969 года. Товарооборот превышает миллиард евро. Реализует «всю линейку» датчиков индуктивности, системы управления, идентификации.

Balluff — один из мировых лидеров по электротехнической продукции. Компания основана в 1929 году, немецким инженером Гебхардом Баллуфом. Сегодня, это международная корпорация представленная в 30 странах планеты. Производство организовано на территории США, Бразилии, Швейцарии, Японии, Венгрии.

AECO — итальянский бренд специализирующийся на выпуске датчиков, средств КИП, автоматики. Работают уже более 50 лет.

Отечественная продукция может не уступать по качеству и стоит на 20-30% дешевле западных аналогов. Известные марки ТЕКО, Сенсор.

НПК «Теко» — завод, более 25 лет, выпускающий электроавтоматику. Помимо индуктивных приборов известен оптическими, емкостными, сенсорными устройствами.

ЗАО «Сенсор» — екатеринбургская торгово производственная компания. Производит бесконтактные выключатели для работы в северной климатической зоне (до -60 0 С ).

Нижний ценовой диапазон занимают товары Китайской Народной Республики.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Что такое датчик частоты вращения? как устроен, где применяется?

До определенного момента эта форма дат­чика позволяет измерять мгновенную скорость в точках на окружности и, соот­ветственно, регистрировать очень мелкие угловые доли.

Примерами относительной частоты враще­ния являются частота вращения коленчатого или распределительного вала двигателя, частота вращения кулачкового вала топлив­ного насоса высокого давления дизеля, ча­стота вращения колес автомобиля (ABS, TCS, ESP). Измерения в основном выполняются с помощью системы инкрементных датчиков, состоящей из шестерни и датчика частоты вращения.

Формы датчиков скорости

Используются различные формы датчиков (рис. «Различные формы датчиков» ): стержневые, вильчатые и кольцевые (внутренние и внешние). Благодаря простоте монтажа, самым распространенной формой датчика является стержневая. Стержневой датчик размещается рядом с ротором, зубья которого приближаются к нему и проходят в непосредственной близости. Однако датчики такой формы имеют самую низкую чувстви­тельность измерений. В некоторых случаях допускается использование вильчатых датчи­ков, нечувствительных к осевому и радиаль­ному люфту. В установленном состоянии этот датчик должен быть примерно совмещен с ротором. Тип датчика, в котором датчик окру­жает вал ротора в форме кольца, уже практи­чески не используется.

Требования к новым датчикам скорости

Во многих отношениях более ранние тра­диционные датчики индуктивного типа по­казывают очень неудовлетворительные ре­зультаты. Они выдают амплитуду, зависимую от частоты вращения, и поэтому непригодны для низких оборотов, допускают лишь от­носительно небольшие допуски воздушного зазора, и большей частью неспособны отли­чить колебания зазора от импульсов частоты вращения. По крайней мере, конец датчика- из-за своей близости к тормозу (в случае с датчиками скорости вращения колес), дол­жен быть стойким к высоким температурам. Эти недостатки находятся позади дополни­тельных функций, на которые нацелено но­вое поколение датчиков:

  • Статическое определение (т.е. при нуле­вой скорости: сверхмалые обороты колен­чатого вала или частота вращения колес);
  • Эффективное измерение в больших зазорах (не совмещенный монтаж с зазорами> 0);
  • Небольшой размер;
  • Эффективная работа независимо от колебаний зазора;
  • Термостойкость до 200 °С;
  • Определение направления (опция для системы навигации);
  • Определение опорной метки (зажигание).

Магнитостатические датчики (датчики Холла, магниторезисторы, AMR) очень хорошо отвечают первым двум требованиям. И, как правило, они также обеспечивают соответствие второму и третьему требованиям.

На рис. «Схема расположения датчиков, нечувствительных к колебаниям воздушного зазора» показаны три, в принципе, прием­лемые формы датчиков, обычно нечувстви­тельные к колебаниям зазора. Здесь следует различать датчики с радиальным и танген­циальным считыванием. Это означает, что, независимо от зазора, магнитостатические датчики всегда смогут отличить северный и южный полюса магнитноактивного полюс­ного колеса или роторного кольца. В случае с магнитнопассивными роторами знак выход­ного сигнала уже не будет зависеть от зазора при регистрации напряженности тангенци­ального поля (хотя тот факт, что зазор часто увеличивается из-за ротора, является здесь недостатком). Однако часто используются также радиально измеряющие градиентные датчики, которые по сути лишь регистрируют градиент радиального поля, изменяющий свой знак не при изменении зазора, а только при изменении угла поворота.

Роторы

Ротор имеет ключевое значение для измере­ния скорости вращения; однако он обычно поставляется автопроизводителем, в то время как сам датчик приходит от постав­щика. До недавних пор почти исключительно использовались магнитнопассивные роторы, состоящие из магнитомягкого материала, обычно железа. Они дешевле магнитотвер­дых полюсных колес и проще в обращении, поскольку не намагничиваются, и нет опас­ности взаимного намагничивания (например, во время хранения). Как правило, при оди­наковых инкрементной ширине и выходном сигнале, внутренний магнетизм полюсного колеса (полюсное колесо определяется как магнитноактивный ротор) допускает значи­тельно больший зазор.

О справочнике

За последние время автомобилестроение превратилось в чрезвычайно сложную отрасль. Все труднее и труднее становится представить всю отрасль в целом, и еще сложнее постоянно следить за направлениями, которые важны для автомобилестроения. Многие из этих направлений подробно описаны в специальной литературе. Тем не менее, для тех, кто впервые сталкивается с данными темами, имеющаяся специальная литература не представляется легкой и тяжело усваивается в ограниченные сроки. В этой связи этот «Автомобильный справочник» будет очень кстати. Он структурирован таким образом, чтобы быть понятным даже для тех читателей, которые впервые встречаются с каким-либо разделом. Наиболее важные темы, относящиеся к автомобилестроению, собраны в компактном, простом для понимания и удобном с практической точки зрения виде.

Что такое датчик оборотов и зачем он нужен?

Датчик оборотов предусмотрен в устройстве мотора для выполнения функции синхронизирования системы зажигания и впрыска топлива. Нередко этот измеритель еще называют измерителем частоты вращения. Датчик оборотов передает нужную информацию в электрический блок, а также данные о том, какие вращения поддерживает коленчатый вал в конкретный момент. Данный измеритель считается важнейшим механизмом автомобиля, поскольку именно от него зависит взаимодействие большинства систем. Он помогает обеспечить корректное функционирование всего транспортного средства. Особые сигналы обрабатываются ЭБУ и посылаются в измеритель для того, чтобы выяснить несколько важных моментов. Это количество впрыскиваемого топлива в данный момент, сам момент впрыска и время для активации клапана адсорбера, а также момент зажигания и угол поворота распределительного вала. Ну и понятное дело, для определения неисправности и проверки прибора, его для начала необходимо найти в автомобиле.

Современные датчики скорости

Гоадиентные датчики

Содержат постоянный магнит, полюс ко­торого обращен к зубчатому колесу. Его поверхность гомогенезирована тонкой ферромагнитной пластиной, на которой расположены два гальваномагнитных эле­мента на расстоянии примерно половины зубчатого интервала. Таким образом, один из элементов всегда находится напротив межзубного промежутка, а другой — напротив зуба. Измеряется различие в напряженности поля в двух смежных местоположениях на окружности. Выходной сигнал приблизи­тельно пропорционален отклонению силы поля как функции угла на окружности, поэ­тому полярность не зависит от зазора.

Датчики частоты вращения Датчики частоты вращения a5s Датчики частоты вращения Датчики измерения частоты вращения, момента, перемещений, уровня на морских судах Что такое датчик оборотов мотора? Датчики частоты вращения a5s Датчики частоты вращения двигателя Бесконтактные магнитные датчики скорости вращения для тяжелых условий эксплуатации Что такое датчик оборотов мотора? Датчики скорости и частоты вращения

Тангенциальные датчики

Тангенциальные датчики отличаются от их аналогов градиентного типа способом по­лучения вариаций в полярности и напря­женности магнитного поля, в компонентах, расположенных касательно к окружности ро­тора. Варианты конструкции включают тон­копленочную технологию AMR (вытянутые резисторы с поперечными полосками) или резисторы из одного сплава, по полу- или полной мостовой схеме. В отличие от гради­ентных датчиков, их не требуется адаптиро­вать к конкретному шагу зубьев ротора, и они могут выполнять считывание в данной точке. Требуется локальное усиление, хотя их изме­рительный эффект на 1-2 порядка выше, чем у кремниевых датчиков Холла (рис. «Датчик оборотов AMR в виде датчика тангенциального поля» ).

При использовании интегрированного в подшипник датчика частоты вращения коленчатого вала, на общей рамке с вы­водами устанавливаются тонкопленочный анизотропный магниторезистивный датчик (AMR-датчик) и монолитная интегральная схема, производящая вычисления. С целью экономии пространства и защиты от влияния температуры, интегральная схема устанавли­вается под углом 90°.

Где располагается датчик частоты вращения?

Индукционный измеритель или датчик оборотов в основном располагается над маркерным диском транспортного средства. В свою очередь этот элемент может находится либо на маховике, либо на коленвале внутри блока цилиндров, либо спереди моторного отсека на коленвале. Очень часто небольшая кривизна зубцов маховика или наличие маленького скола могут привести к нарушениям в работе системы зажигания. Тогда силовой агрегат не сможет работать на повышенных частотах вращения и будет происходить хаотичное искрообразование. Кроме того, на некоторых автомобилях этот датчик может быть заменен датчиком Холла. Это устройство способно передавать в главный блок управления сигнал о фазах механизма газораспределения, а также обороты мотора. Если это так, то прибор будет расположен у распределительного вала. Если измеритель частоты вращения выйдет из строя, автомобилист не сможет завести свое транспортное средство. И если после доскональной проверки систем зажигания и топлива существенных отклонений не будет выявлено, нужно обязательно проверить работоспособность самого датчика оборотов. Если же возникает так называемое плавающее вращение двигателя, то понадобится проверить сразу все варианты проблем. Ну а для своевременного обнаружения неполадок желательно повести диагностику автомобиля.

Что можно сделать при выходе из строя датчика оборотов, подробнее будет рассказано в этом видео:

Сравнение индуктивных и ёмкостных датчиков положения

Сравнение индуктивных и ёмкостных датчиков положения

Автор: Mark Howard, Zettlex UK Ltd

Введение

Некоторые индуктивные и ёмкостные датчики выглядят очень похоже и неудивительно что инженеры-разработчики бывают сбиты с толку их сходством. И те и другие являются бесконтактными датчиками положения и построены на основе печатных плат. Тем не менее, физические принципы, лежащие в основе каждого типа датчиков, достаточно различны. В конечном итоге на практике это означает, что эти типы датчиков подходят для различных приложений. Эта статья объясняет физические принципы каждой технологии и сравнивает соответственно сильные и слабые стороны каждого подхода.

Принцип работы – Ёмкостные датчики

Когда исследователя Эвальда Юргена фон Клейста ударило электрическим током от лабораторного прибора в 1745 году, он внезапно понял, что есть возможность сохранять электрический заряд в больших количествах. Возможно, ненамеренно он построил первый в мире конденсатор. Конденсатор действует как накопитель электрической энергии и, как правило, состоит из двух проводящих пластин, разделённых непроводящим материалом (диэлектриком). В качестве диэлектрика обычно выступает воздух, пластик или керамика. Простая математическая модель конденсатора приведена на рис. 1.

Рис. 1 Простая модель конденсатора (С)

Диэлектрическая проницаемость ε включает в себя две составляющие — εr и ε0, где εr – это относительная магнитная проницаемость (иногда называемая диэлектрической постоянной) материала между пластинами и ε0 – электрическая постоянная (ε0 ≈ 8.854×10−12 Ф/м).

Многие датчики работают по ёмкостному принципу, в особенности тактильные датчики таких устройств, как планшеты и мобильные телефоны. Эти ёмкостные датчики определяют отсутствие или присутствие пальца человека и работают как альтернатива кнопочному переключателю. Присутствие пальца человека – или скорее воды в нём – приводит к изменению относительной диэлектрической проницаемости вызывающей в свою очередь изменение ёмкости.

Другой тип ёмкостного датчика – это ёмкостной датчик перемещения, который работает путём измерения изменений ёмкости происходящих из-за изменения размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость как при изменении расстояния между пластинами (d) так и при изменении площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат.

Другой тип ёмкостного датчика – это ёмкостной датчик перемещения. Принцип его работы основан на измерении величины емкости, которая изменяется при изменении размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость прямо пропорциональна как расстоянию между пластинами (d), так и площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат.

Для того чтобы хранить сколько-нибудь значительный заряд, расстояние между пластинами d должно быть существенно меньше площади пластин. Величина d обычно гораздо меньше 1 мм. По этой причине такая технология хорошо подходит для измерения нагрузки и тензометрических датчиков, поскольку может давать сравнительно большие изменения сигнала при маленьком измеряемом расстоянии. Похожим образом, ёмкостные линейные или вращающиеся датчики могут быть сконструированы таким образом, что перемещение вызывает изменение площади перекрытия пластин A. Например, один комплект пластин расположен на подвижной части датчика, а другой комплект расположен на статичной части. Как только два этих комплекта смещаются относительно друг друга, площадь А изменяется.

К сожалению, кроме изменения размеров конденсатора, ёмкость также чувствительна и к другим факторам. Если пластины конденсатора окружены воздухом то диэлектрическая проницаемость будет изменяться из-за влияния температуры и влажности, поскольку диэлектрическая постоянная воды отличается от воздуха. Близко расположенный объект, который изменяет проницаемость окружающего пространства, тоже будет вызывать изменения ёмкости. В случае тактильного датчика, вода в пальцах вызывает местное изменение проницаемости и, соответственно, срабатывание датчика. Вот почему работа нереагирующего тактильного датчика может быть улучшена, если намочить конец пальца.

За исключением случаев, когда окружающая среда датчика может быть герметично замкнута или жёстко контролируема, ёмкостные датчики не подходят для применения в жёстких условиях окружающей среды, где есть возможность проникновения посторонних веществ или больших изменений температуры. Неудивительно, что ёмкостные датчики мало подходят для применения в условиях, где высока вероятность образования конденсата при снижении температуры.

При неизменном физическом устройстве датчика, расстояние между пластинами датчика должно поддерживаться малым относительно размеров пластин конденсатора и выдерживаться в достаточно узком допуске. Это может накладывать очень высокие требования по механической точности установки датчика в конечное изделие и может быть непрактично и неэкономично, поскольку различие тепловых расширений, вибраций или механических допусков конечного изделия могут привести к изменению расстояния между пластинами и, таким образом, к искажению измерений.

Более того ёмкостный эффект основан на хранении электрического заряда на пластинах конденсатора. Если конечное изделие, куда устанавливается датчик, может создавать электростатическое поле в процессе своего перемещения – от трения, скольжения или вращения деталей – это может искажать показания датчика. В экстремальных случаях датчик не будет работать совсем или, что хуже, электростатические возмущения будут приводить к правдоподобным, но неверным показаниям датчика. В некоторых случаях обязательно заземление компонентов конечного изделия для рассеивания заряда с пластин датчика. Часто это является необходимым в ёмкостных датчиках угла, поскольку вращение вала создаёт статический заряд из-за относительного перемещения подшипников, шестерён, шкивов и прочее.

Принцип работы – Индуктивные датчики

В 1831 Майкл Фарадей открыл, что протекание переменного тока по одному проводнику индуцирует протекание тока в противоположном направлении во втором проводнике. С тех пор магнитная индукция стала широко использоваться как физический принцип построения датчиков для измерения положения и скорости – резольверы (СКВТ), сельсины и дифференциальный трансформатор для измерения линейных перемещений. Основы теории можно объяснить, рассматривая две катушки: передающую катушку (Tx), по которой протекает переменный ток, и приёмную катушку (Rx), в которой индуцируется ток.

Рисунок 2. Закон индукции Фарадея

Величина напряжения на приёмной обмотке пропорциональна относительным площадям, геометрии и смещению двух катушек. Однако, как и с ёмкостной технологией, на поведение катушек могут влиять и другие факторы. Одним из таких факторов является температура, но её влияние может быть нивелировано путём использования нескольких приёмных катушек и вычислении положения по отношению полученных сигналов (как в дифференциальном трансформаторе). Соответственно, даже в случае изменений температуры, её влияние на результат компенсируется, поскольку отношение сигналов является неизменным для любого положения.

В отличие от ёмкостных способов измерения, индуктивная технология гораздо менее подвержена влиянию посторонних частиц, таких как вода или грязь. Поскольку катушки могут находиться на относительно большом расстоянии друг от друга, точность установки составляет гораздо меньше проблем, и основные компоненты индуктивного датчика могут быть установлены с относительно свободными допусками. Это не только помогает снизить стоимость датчика и конечного изделия, но также позволяет использовать компоненты с защитным покрытием или заливкой, что позволяет датчикам противостоять таким внешним воздействующим факторам, как длительное погружение, сильные удары, вибрация или наличие взрывоопасной газовой или пылевой среды.

Индуктивные датчики обеспечивают надёжный, стабильный и устойчивый к внешним воздействиям подход к измерению положения и, таким образом, является предпочтительным выбором в приложениях, где жёсткие условия окружающей среды являются нормой, например, в военной технике, авиакосмической промышленности, промышленных установках и системах для нефтегазового сектора.

Несмотря на надёжность и устойчивость к внешним воздействиям, традиционные индуктивные датчики имеют ряд отрицательных сторон, которые препятствуют их более широкому распространению. В их конструкции есть проводники, намотанные на катушки, которые должны быть намотаны достаточно точно, чтобы обеспечить необходимую точность измерений положения. Для того, чтобы обеспечить наличие достаточно сильного электрического сигнала, необходимы обмотки с большим количеством витков. Такая конструкция с намотанной катушкой делает традиционный индуктивный датчик громоздким, тяжёлым и дорогим.

Инженеры, рассматривающие возможность применения индуктивных датчиков положения, часто задают вопрос о сложностях, связанных с электромагнитными шумами. В данном случае такая озабоченность является неуместной, если принять во внимание, что эти датчики, как резольверы, успешно используются много лет в жёсткой электромагнитной установке в корпусах электродвигателей для коммутации и управления скоростью. Что касается температурной стабильности, то устойчивость к жёстким условиям может быть достигнута при использовании дифференциального подхода, так, что электромагнитная энергия, поступающая в различные части системы, эффективно компенсирует друг друга. Вот почему индуктивные датчики, такие как резольверы и дифференциальные линейные трансформаторы, являются предпочтительным выбором в ответственных применениях, например, в гражданской авиации в течение многих лет.

Другой подход к индуктивным датчикам

Другой подход к индуктивным датчикам использует тот же физический принцип, но в нём применяются плоские конструкции на основе печатных плат вместо намотанных катушек. Именно этот подход и применяется Zettlex . Это означает, что обмотки могут быть изготовлены путём травления меди или при помощи нанесения на самые различные материалы подложки: полиэстерную плёнку, бумагу, эпоксидный слоистый пластик и даже на керамику. Такие печатные конструкции можно изготовить более точно, чем намотанные катушки. Вследствие чего достигается более высокая точность измерения при меньших затратах, размерах и массе, сохраняя в то же время все положительные свойства индуктивной технологии.

incoder.jpg

Рисунок 3. Пример грязного, но полностью работоспособного индуктивного датчика с плоской печатной обмоткой.

Датчики серии IncOders компании Zettlex – это бесконтактные устройства для прецизионного измерения угла. Датчик IncOder состоит из двух частей: статор и ротор, каждая из которых имеет форму плоского кольца. Большое центральное отверстие позволяет легко пропускать валы, оптические волокна, трубы и кабели, размещать токосъёмники. Индуктивные угловые энкодеры серии IncOder не требуют точной механической установки, скорее можно сказать, что ротор и статор должны быть просто привинчены в конечное изделие. Угловые энкодеры Zettlex не восприимчивы к посторонним веществам, что делает их идеально подходящими к жёстким условиям окружающей среды, где ёмкостные устройства работают ненадёжно.

Заключение

Преимущества каждого из трёх подходов сведены вместе в таблице ниже. Можно сделать вывод, что из трёх приведённых подходов, нетрадиционный индуктивный подход, использующий печатные обмотки, обеспечивает наибольшее количество преимуществ.

Каталог статей

http://www.samelectric.ru/wp-content/uploads/Induktivny-j-datchik.pngИндуктивные датчики

В промышленной электронике индуктивные датчики применяются очень широко. Долго имею с ними дело, и вот решил написать статью, поделиться знаниями.

Виды датчиков

Итак, что вообще такое датчик. Датчик — это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Датчиков бывает великое множество. Перечислю лишь те, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия — датчик приближения, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут «proximity sensor».

Оптические. Другие названия — фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются «датчик освещённости»

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления . Давления воздуха или масла нет — сигнал на контроллер или рвёт аварийную цепь.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Принцип работы индуктивного датчика

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

http://www.samelectric.ru/wp-content/uploads/Pole-induktivnogo-datchika.png

Поле индуктивного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла — нет сигнала.

Применение индуктивного датчика

Датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие — соответствие по току и напряжению.

Разновидности, основные отличия

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

1. Конструкция, вид корпуса

Тут два основных варианта — цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса — металл (различные сплавы) или пластик.

2. Диаметр цилиндрического датчика

Основные размеры — 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

3. Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние — от 0 до 2 мм, для датчиков диаметром 12 и 18 мм — до 4 и 8 мм, для крупногабаритных датчиков — до 20…30 мм.

4. Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

http://www.samelectric.ru/wp-content/uploads/2-provodny-j-datchik.png

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением — не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать.

3-проводные. Наиболее распространены. Есть два провода для питания, и один — для нагрузки.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод — выбор режима работы или состояния выхода.

5. Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. На выходе — транзистор PNP, то есть коммутируется «плюсовой» провод. К «минусу» нагрузка подключена постоянно.

Транзисторный NPN. На выходе — транзистор NPN, то есть коммутируется «минусовой», или нулевой провод. К «плюсу» нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

6. Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров — электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят — нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре — NO и NC.

То есть, главное, что надо знать про транзисторные выходы датчиков — то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

7. Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая «1″) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Хотя, это не строгие правила (положительная — pnp, отрицательная — npn). Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Схемы включения 3-х проводных датчиков

http://www.samelectric.ru/wp-content/uploads/PNP-vy-hod.png

PNP выход датчика. Нагрузка (Load) постоянно подключена к «минусу» (0V)

http://www.samelectric.ru/wp-content/uploads/NPN-vy-hod.png

NPN выход датчика. Нагрузка (Load) постоянно подключена к «плюсу» (+V)

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

http://www.samelectric.ru/wp-content/uploads/Shema-vklyucheniya-NPN-i-PNP-vy-hodov-datchikov.png

Схемы включения NPN и PNP выходов датчиков

На левом рисунке — датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае — отрицательный провод источника питания.

Справа — случай с транзистором PNP на выходе. Этот случай — наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

На принципиальных схемах индуктивные датчики обозначают по разному. Но главное — присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

http://www.samelectric.ru/wp-content/uploads/NO-NZ-shemy-.png

НО НЗ датчики. Принципиальные схемы.

На верхней схеме — нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема — нормально закрытый, и третья схема — оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

Синий (Blue) — Минус питания

Красный (Brown) — Плюс

Чёрный (Black) — Выход

Белый (White) — второй выход, или вход управления, надо смотреть инструкцию.

голоса
Рейтинг статьи
Читайте так же:
Сколько можно ездить без прав после решения суда?
Ссылка на основную публикацию
Adblock
detector